

Exterior Non-Ductile Beam-Column Joints

Michael Barnes

University of California, San Diego

Sebastien Jigorel

ENTPE, Lyon, France

under the guidance of

Professor Moehle

University of California, Berkeley

SangJoon Park

University of California, Berkeley

Background

Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

- Many Reinforced Concrete buildings in Los Angeles built prior to the adaptation of modern seismic codes were designed with insufficient lateral capacity
 - Most classified as being insufficient
 - Susceptible to collapse
 - Current guidelines are too conservative
 - Retrofit costs high
- Objective: To research exterior non-ductile beamcolumn joints experiencing early column failure

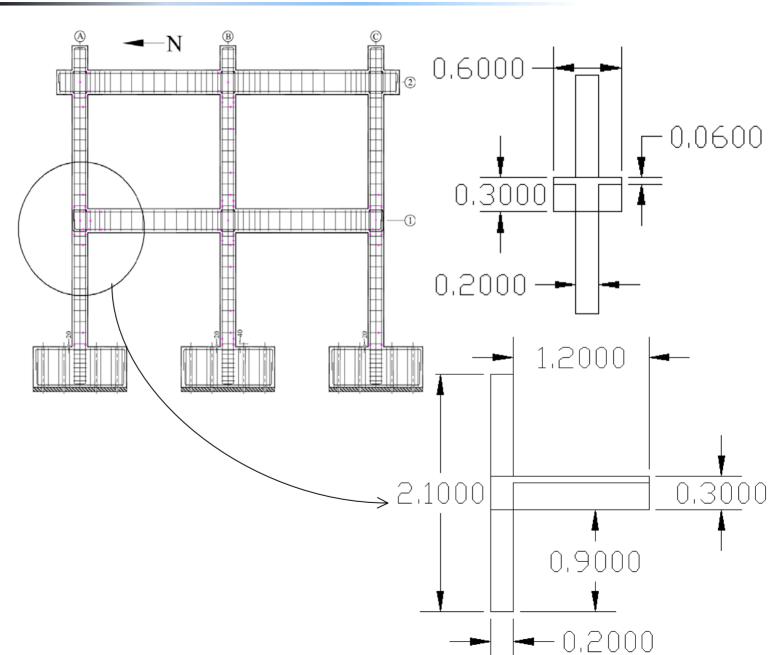
-10/11/11/14/4/4/4/4/4

Specimen Specifications

Background

Specimen
Specifications

Shear Capacity Calculations


Cage

Form

Shear Devices

Casting

Specimen Specifications

Background

Specimen
Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

Testing

Specimen 1:

P = 0.2 Agfc' = 50 Kips

Hoops and Stirrups

Column

Specimen 2:

$$P = 0.4 A_g f_c' = 100 Kips$$

Unreinforced Beam Column Joint

P

0.0300

P

0,0400

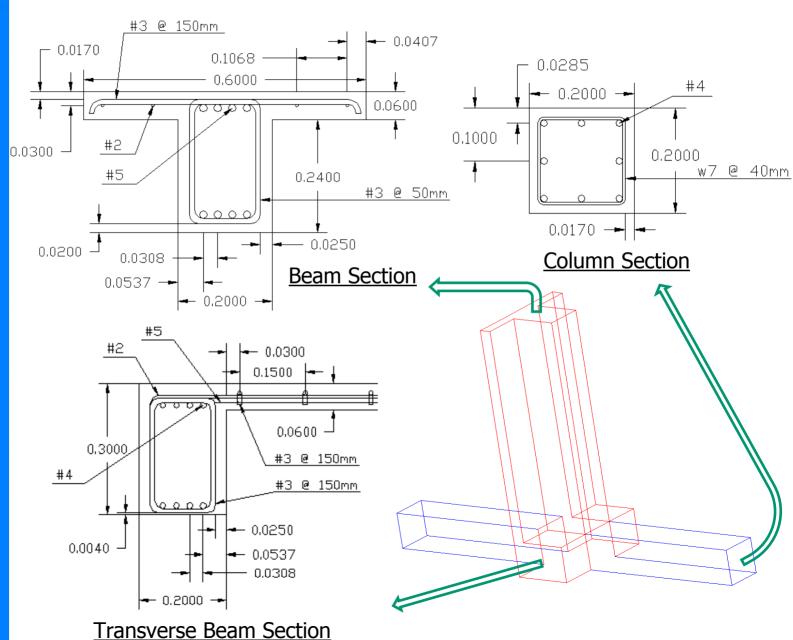
-14/14/4/44

Specimen Specifications

Background

Specimen
Specifications

Shear Capacity Calculations


Cage

Form

Shear Devices

Casting

Specimen Specifications

Background

Specimen
Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

Testing

Material properties used in analyses

$$f'c = 4 Ksi$$

Steel Bar	F _y (Ksi)	$\mathbf{\epsilon}_{\mathrm{y}}$	F _u (Ksi)	$oldsymbol{arepsilon}_{ m u}$
5mm (smooth)	95.29	0.005	99.50	0.02
#2 (deformed)	33.61	0.002	51.20	0.12
#3 (deformed)	60.00	0.008	90.00	0.09
#4 (deformed)	70.00	0.005	100.0	0.12
#5 (deformed)	70.00	0.005	100.0	0.12
#6 (deformed)	70.00	0.005	100.0	0.12

Real material properties

Steel Bar	F _y (Ksi)		2 (0/)	F _u (Ksi)			a (0/)	
	max	average	min	ε _y (%)	max	average	min	ε _u (%)
w 7		88.80		0.7		107.1		2.237
#2 (w 5)	64.35	63.45	62.96	0.474	75.26	74.08	72.67	17.88
#3	65.33	65.27	65.23	0.436	105.1	104.8	104.6	11.86
#4	65.92	67.76	71.37	0.460	104.5	96.25	91.36	12.21
#5	67.00	66.60	66.33	0.521	90.43	90.1	90.12	12.5

Shear Capacity Calculations

Column failure

Balanced moment failure of the column: 438.6 k-in

 \rightarrow F = 22.3 kips

Background

Specimen Specifications

Shear Capacity **Calculations**

Cage

Form

Shear Devices

Casting

Shear Capacity Calculations

Background

Specimen Specifications

Shear Capacity
Calculations

Cage

Form

Shear Devices

Casting

Testing

 γ = Joint Shear Strength Factor

Specimen 1 (50 Kips):

- Column

* Yielding : M=412 k-in -> F=20.9 Kips

* Failure : M=412 k-in -> F=20.9 Kips_

Specimen 2 (100 Kips):

- Column

*Yielding : 438.6 k-in -> F=22.3 Kips -> γ = 13.79 (psi)

y = 12.92 (psi)

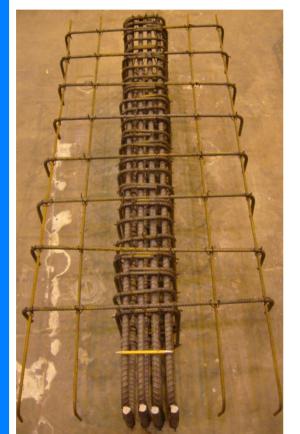
*Failure : 427.1 k-in ->F=22.2 Kips -> γ = 13.74 (psi)

Cage

Beam

Background

Specimen Specifications


Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

-14/4 14/44

Cage

Background

Specimen Specifications

Shear Capacity Calculations

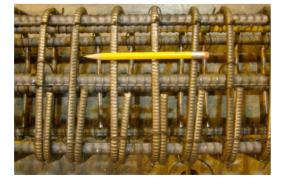
Cage

Form

Shear Devices

Casting

Testing



Column

-14/4 Hakkya, -----

Form

Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

Testing


Beam

Form

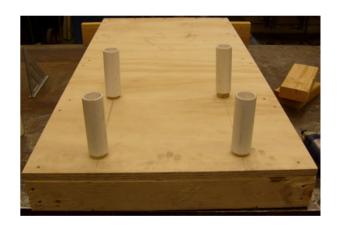
Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form


Shear Devices

Casting

Testing

Beam

Form

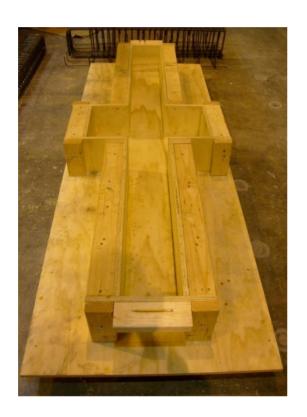
Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form


Shear Devices

Casting

Testing

Column

-12/1/1/14/14/14/14

Shear Devices

Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

-12/4 Later-

Casting

Background

Specimen Specifications

Shear Capacity Calculations

Cage

Form

Shear Devices

Casting

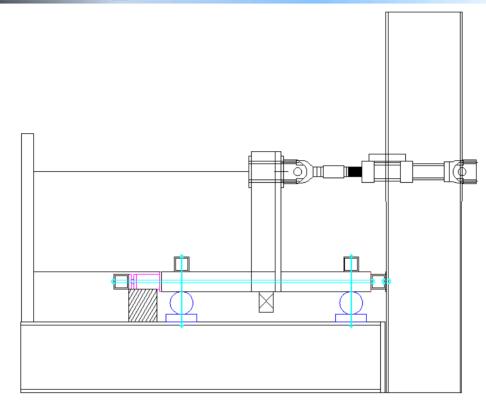
-14/1 Lakeya,

Testing

Background

Specimen Specifications

Shear Capacity
Calculations


Cage

Form

Shear Devices

Casting

- Location: Richmond Field Station (Structural Research Laboratory)
- Date: The week of August 18
- Axial Load: 0.2 $A_g f_c$ ′(50 kips) 0.4 $A_g f_c$ ′(100 kips)
- Beam Loading: Cyclic till failure
- Boundary conditions: Roller and Pin
- Instrumentations:
 - LVDT's (for capturing shear strain)
 - Potentiometers (for capturing beam lateral displacement)